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Testing?  Why do I care?



What Is Testing?

●   Check that your code does what it's supposed to do.

●   At varying levels of granularity.

●   In varying environments.

●   At various points in its development.



What Is Automated Testing?

●   Programs to check other programs.

●   As with any rote task, you let the computer do it.
◆   Humans will forget rote tests, computers will not

●   Press a button and walk away.
◆   No human required (very important)

●   Manually running tests is a waste of your time.

●   Tests should run as close to instantaneous as possible
◆   so you won't have an excuse not to run them
◆   so you'll run them as often as possible
◆   Instant feedback



Testing Promotes Automation

●   Testable code is decoupled

●   Testable code is scriptable



Why Test?

●   no missing functionality

●   no accidental functionality

●   when your tests pass, you're done



More informative bug reports

●   Better to get the diagnostic output of your tests than "It doesn't 
work"

●   Easily generated by end users
◆   "Run the tests and send me the output"

●   Helps IMMENSELY with porting (this is why my code works on 
VMS)
◆   You can often port code without ever using the machine you're 

porting to



More More Reasons

●   Most of the time spent on a project is debugging and bug fixing.
◆   Worse, it often comes at the end (hidden cost)
◆   "Oh, I'm 99% done, I just need to do some testing"

●   Testing as you go will increase your development time, but 
reduce debugging time.
◆   It will let you estimate more realistically
◆   Increased project visibility
◆   Reduced debug time once you get used to it



The Real Reason For Writing Tests

●   Confidence.
◆   No fear of change
◆   No fear of lurking bugs
◆   No fear of breaking old things
◆   No fear that new things don't work

❐   Knowing when things don't work.

●   So you can play and experiment without worry.

●   Enable refactoring



Testing Is Laziness

●   Take an O(n) amount of work and make it O(1)
◆   Instead of walking through the code by hand at each change
◆   Teach the computer to do that.



What to test



Textbook Testing

●   Traditional testing philosophy says things like

    Test all subroutines
    Test all branches of all conditions
    Test the boundary conditions of all inputs
    ...
    

●   This is just big and scary and too much.

●   We're lazy, and we think we can still be effective with much 
less work.



XP Testing

●   XP says to write your tests before you write your code.
◆   It's hard enough to get people to write tests at all.
◆   Changing their coding philosophy at the same time is worse.

●   If you can do Test First, excellent.

●   If you're not already testing, this is a chance to start some new 
habits...



On Test-First Programming

●   Think of it as coding to teeny, tiny, mini-iterations.

●   Break each task into boolean expressions.

●   Ask "What feature do I need next?"
◆   Test the smallest and most immediate element of the overall task.
◆   Take small steps!



The two test-first questions

●   "How can I prove that this feature works?"
◆   Write the simplest test that will fail unless the feature works.
◆   The test must fail.

●   "What is the least amount of code I can write to pass the test?"
◆   The simpler the test, the simpler the code you need.
◆   The test must now pass.

●   This produces known good code and a comprehensive test 
suite.

●   Be sure to run the entire test suite after you implement a task.

●   Don't be afraid of baby steps.  That's the point.



Test Bugs

●   Another good philosophy is to test bugs and new features.

●   Every time you find a bug, write a test for it.

●   Every time you add a new feature, write a test for it.

●   In the process, you might test a few other related things.

●   This is the simplest way to retrofit tests onto existing code.



Effects Of Testing Bugs

●   This has pleasant effects:
◆   Slowly grows your test suite
◆   Focuses tests on the parts of the code which have the most bugs

●   You're allowed to make mistakes, but ONLY ONCE.  Never 
twice.

●   A disproportionate amount of bugs use the same logic.
◆   One test can catch lots of bugs



Knowing You're Done

    t/Your-Code.t......ok
    All tests successful.
    

●   For once, your computer is telling you something good.

●   Instant, positive feedback



There Is No Magic

●   You may have seen this from h2xs.

    ######## We start with some black magic to print on failure.

    # Change 1..1 below to 1..last_test_to_print .
    # (It may become useful if the test is moved to ./t subdirectory.)

    BEGIN { $| = 1; print "1..1\n"; }
    END {print "not ok 1\n" unless $loaded;}
    use Foo;
    $loaded = 1;
    print "ok 1\n";

    ######## End of black magic.
    

●   Testing really isn't this frightening.



And Now For Something Completely Different



The Most Basic Perl Test Program

        #!/usr/bin/perl -w

        print "1..1\n";

        print 1 + 1 == 2 ? "ok 1\n" : "not ok 1\n";
        

●   Since 1 + 1 is 2, this prints:

            1..1
            ok 1
        
◆   "1..1"  I'm going to run one test.
◆   "ok 1"  The first test passed.



Perl's Testing Protocol

●   There are two parts to running a test in Perl.
◆   Your test
◆   Test::Harness

●   The output of your test is piped to Test::Harness.

●   Test::Harness interprets your output and reports.

    $ perl -MTest::Harness -wle 'runtests @ARGV' contrived.t
    contrived....ok
    All tests successful.
    Files=1, Tests=1,  0 wallclock secs ( 0.02 cusr +  0.02 csys =  0.04 CPU)
    



There's TMTOWTDI and there's this...

●   Here's some of the many ways people write their tests:
◆   t/op/sysio.t

        print 'not ' unless (syswrite(O, $a, 2) == 2);
        print "ok 20\n";
        

◆   ext/Cwd/t/cwd.t

        print +($getcwd eq $start ? "" : "not "), "ok 4\n";
        

◆   t/pod/plainer.t

        unless( $returned eq $expected ) {
            print map { s/^/\#/mg; $_; }
            map {+$_}               # to avoid readonly values
            "EXPECTED:\n", $expected, "GOT:\n", $returned;
            print "not ";
        }
        printf "ok %d\n", ++$test; 
        

●   Maintenance nightmare.



I'm ok, you're ok

    #!/usr/bin/perl -w

    use Test::Simple tests => 1;

    ok( 1 + 1 == 2 );
    

●   "ok" is the backbone of Perl testing.
◆   If the expression is true, the test pass.
◆   False, it fails.

●   Every conceivable test can be performed just using ok().



YOU FAILED!!!

    #!/usr/bin/perl -w

    use Test::Simple tests => 2;
    ok( 1 + 1 == 2 );
    ok( 2 + 2 == 5 );
    

●   from that comes:

    1..2
    ok 1
    not ok 2
    #     Failed test (contrived.t at line 5)
    # Looks like you failed 1 tests of 2.
    
◆   "1..2"  I'm going to run two tests.
◆   "ok 1"  The first test passed.
◆   "not ok 2"  The second test failed.
◆   Some helpful commentary from Test::Simple



Date::ICal

●   We're going to write some tests for Date::ICal.
◆   It's real code.
◆   It's sufficiently complex.
◆   Everyone understands dates.

❐   Some people even have them.



Where To Start?

●   This is the hardest part.

●   Retrofitting a test suite onto old code sucks.
◆   Marching through the testing swamps.

●   Write tests from the start and your life will be easier.

●   In any event, begin at the beginning.



new()

●   Since Date::ICal is OO, the beginning is when you make an 
object.
◆   (white-lie:  the beginning is when you load the module)

    #!/usr/bin/perl -w

    use Test::Simple tests => 2;

    use Date::ICal;

    my $ical = Date::ICal->new;       # make an object
    ok( defined $ical );              # check we got something
    ok( $ical->isa('Date::ICal') );   # and it's the right class
    

●   This produces:

    1..2
    ok 1
    ok 2
    

●   This is your first useful test.



Names

●   "ok 2" isn't terribly descriptive.
◆   what if you have 102 tests, what did #64 do?

●   Each test can be given a little description.

    ok( defined $ical,            'new() returned something' );
    ok( $ical->isa('Date::ICal'), "  and it's the right class" );
    

●   This outputs

    1..2
    ok 1 - new() returned something
    ok 2 -   and it's the right class
    



What's In A Name

●   Two views on names.
◆   A name is a descriptive tag so you can track the test output back to 

the code which produced it.  (the original purpose)
◆   A name is a short description of what was tested.

●   There's a subtle difference.

●   Don't pull your hair out over it.
◆   More importantly, don't pull other people's hair out over it.



Test The Manual

●   Simplest way to build up a test suite is to just test what the 
manual says it does.
◆   Also a good way to find mistakes/omissions in the docs.
◆   You can take this five steps further and put the tests IN the 

manual.  Test::Inline, later.

●   If the docs are well written, they should cover usage of your 
code.
◆   You do have docs, right?



SYNOPSIS

●   A good place to start.
◆   A broad overview of the whole system

●   Here's a piece of Date::ICal's SYNOPSIS.

    SYNOPSIS

       use Date::ICal;

       $ical = Date::ICal->new( year => 1964, month => 10, day => 16,
           hour => 16, min => 12, sec => 47, tz => '0530' );

       $hour = $ical->hour;
       $year = $ical->year;
    

●   Oddly enough, there is a bug in this.



SYNOPSIS test

    use Test::Simple tests => 8;
    use Date::ICal;

    $ical = Date::ICal->new(
        year => 1964, month => 10, day  => 16, hour => 16,
        min  => 12,    sec  => 47, tz   => '0530' );

    ok( defined $ical,            'new() returned something' );
    ok( $ical->isa('Date::ICal'), "  and it's the right class" );

    ok( $ical->sec   == 47,       '  sec()'   );
    ok( $ical->min   == 42,       '  min()'   );
    ok( $ical->hour  == 10,       '  hour()'  );
    ok( $ical->day   == 16,       '  day()'   );
    ok( $ical->month == 10,       '  month()' );
    ok( $ical->year  == 1964,     '  year()'  );
    



SYNOPSIS results

    1..8
    ok 1 - new() returned something
    ok 2 -   and it's the right class
    ok 3 -   sec()
    not ok 4 -   min()
    #     Failed test (ical.t at line 14)
    not ok 5 -   hour()
    #     Failed test (ical.t at line 15)
    ok 6 -   day()
    ok 7 -   month()
    ok 8 -   year()
    # Looks like you failed 2 tests of 8.
    

●   Whoops, failures!

●   We know what and where it failed, but not much else.

●   How do you find out more?
◆   Throw in print statements
◆   Run in the debugger.

●   That sounds like work.



Test::More

●   Test::Simple is deliberately limited to one function.

●   Test::More does everything Test::Simple does.
◆   You can literally s/use Test::Simple/use Test::More/

●   It provides more informative ways to say "ok".



is() you is() or is() you isnt() my $baby;

●   Test::More's is() function:
◆   declares that something is supposed to be something else
◆   "Is this, that?"

        is( $this, $that );

        # From

        ok( $ical->day   == 16,       '  day()'   );

        # To

        is( $ical->day,     16,       '  day()'   );
        



ok() to is()

●   Here's the test with ok() replaced with is() appropriately.

    use Test::More tests => 8;

    use Date::ICal;

    $ical = Date::ICal->new(
           year => 1964, month => 10, day => 16, hour => 16,
        min  => 12, sec     => 47, tz  => '+0530' );

    ok( defined $ical,            'new() returned something' );
    ok( $ical->isa('Date::ICal'), "  and it's the right class" );
    is( $ical->sec,     47,       '  sec()'   );
    is( $ical->min,     42,       '  min()'   );
    is( $ical->hour,    10,       '  hour()'  );
    is( $ical->day,     16,       '  day()'   );
    is( $ical->month,   10,       '  month()' );
    is( $ical->year,    1964,     '  year()'  );
    

●   "Is $ical->sec, 47?"

●   "Is $ical->min, 12?"



Diagnostic Output

    1..8
    ok 1 - new() returned something
    ok 2 -   and it's the right class
    ok 3 -   sec()
    not ok 4 -   min()
    #     Failed test (- at line 13)
    #          got: '12'
    #     expected: '42'
    not ok 5 -   hour()
    #     Failed test (- at line 14)
    #          got: '21'
    #     expected: '10'
    ok 6 -   day()
    ok 7 -   month()
    ok 8 -   year()
    # Looks like you failed 2 tests of 8.
    

●   $ical->min returned 12 instead of 42.

●   $ical->hour returned 21 instead of 10.



Interpreting The Results

●   Turns out, there is no 'tz' argument to new()!
◆   And it didn't warn us about bad arguments

●   The real argument is 'offset'
◆   So the synopsis is wrong.
◆   This is a real bug I found while writing this

●   Damn those tests.



When to use is()

●   Use instead of ok() when you're testing "this equals that".
◆   Yes, there is an isnt() and isn't().

●   is() does a string comparison which 99.99% of the time comes 
out right.
◆   cmp_ok() exists to test with specific comparison operators



Tests Are Sometimes Wrong

●   The previous example was supposed to be highly contrived to 
illustrate that tests are sometimes wrong.

●   When investigating a test failure, look at both the code and the 
test.

●   There's a fine line of trusting your testing code.
◆   Too much trust, and you'll be chasing phantoms.
◆   Too little trust, and you'll be changing your tests to cover up bugs.



How Can I Be Sure The Test Is Right?

●   Write the test

●   Run it and make sure the new test fails

●   Add the new feature / fix the bug

●   Run the test and make sure the new test passes.

●   Some development systems, such as Aegis, can enforce this 
process.

●   It's difficult to do this when writing tests for existing code.
◆   Another reason to test as you go



Version Control and Testing

●   VC & testing work well.
◆   Run the tests, make sure they pass
◆   Make sure everything is checked in.
◆   Write tests for the bug / feature.

❐   Make sure they fail.
◆   Fix your bug / write your feature
◆   Run the tests.

❐   If they pass, commit.  You're done.
❐   If they fail, look at the diff.  The problem is revealed by that change.

●   The smaller the change, the better this works.

●   You are using version control, right?



Testing vs Brooks's Law

●   Tests catch damage done by a new programmer immediately

●   Easier for other developers to help you
◆   They can pre-test their patches.
◆   Even if you write perfect code, the rest of us don't.



Testing Lots Of Values

●   Date handling code is notorious for magic dates that cause 
problems
◆   1970, 2038, 1904, 10,000.  Leap years.  Daylight savings.

●   So we want to repeat sets of tests with different values.



It's Just Programming

use Test::More tests => 32;
use Date::ICal;

my %ICal_Dates = (
    '19971024T120000' =>    # from the docs.
                            [ 1997, 10, 24, 12,  0,  0 ],
    '20390123T232832' =>    # after the Unix epoch
                            [ 2039,  1, 23, 23, 28, 32 ],
    '19671225T000000' =>    # before the Unix epoch
                            [ 1967, 12, 25,  0,  0,  0 ],
    '18990505T232323' =>    # before the MacOS epoch
                            [ 1899,  5,  5, 23, 23, 23 ],
);

while( my($ical_str, $expect) = each %ICal_Dates ) {
    my $ical = Date::ICal->new( ical => $ical_str, offset => 0 );

    ok( defined $ical,            "new(ical => '$ical_str')" );
    ok( $ical->isa('Date::ICal'), "  and it's the right class" );
    is( $ical->year,    $expect->[0],     '  year()'  );
    is( $ical->month,   $expect->[1],     '  month()' );
    is( $ical->day,     $expect->[2],     '  day()'   );
    is( $ical->hour,    $expect->[3],     '  hour()'  );
    is( $ical->min,     $expect->[4],     '  min()'   );
    is( $ical->sec,     $expect->[5],     '  sec()'   );
}



The Good News

●   If you can write good code, you can learn to write good tests.

●   Just a while loop.

●   Easy to throw in more dates.



The Bad News

●   You have to keep adjusting the # of tests when you add a date.
◆   use Test::More tests => ##;

●   There are some tricks:

    # For each date, we run 8 tests.
    use Test::More tests => keys %ICal_Dates * 8;
    

●   There's also 'no_plan':

    use Test::More 'no_plan';
    



Plan?  There Ain't No Plan!

●   The plan exists for protection against:
◆   The test dying
◆   Accidentally not printing tests to STDOUT
◆   Exiting early

●   The first two have other protections, and the third will shortly.
◆   So the plan isn't as useful as it used to be

●   Newer versions of Test::Harness allow the plan to be at the 
end:

        ok 1
        ok 2
        ok 3
        1..3
        

●   This allows Test::More to count your tests for you.
◆   You have to upgrade Test::Harness for this to work.



Boundary tests

●   Almost bad input

●   Bad input

●   No input

●   Lots of input

●   Input that revealed a bug



Bad Input Can Do Bad Things

●   Garbage in / Error out
◆   graceful exceptions, not perl errors
◆   helpful warnings, not uninitialized value warnings

●   Make sure bad input causes predictable, graceful failure.



Basic bad input example

    use Test::More tests => 2;

    local $!;
    ok( !open(FILE, "I_dont_exist"), 'non-existent file' );
    isnt( $!, 0,                     '  $! set' );
    

●   Note, the exact value of $! is unpredictable.



Tests with warnings

●   Test::More used to have a problem testing undefined values

    use Test::More tests => 1;
    is( undef, undef, 'undef is undef' );
    

●   The test will pass, but there would be warnings.
◆   The user will see them, but the test will not.

●   There's a whole bunch of these in Test-Simple/t/undef.t



Catching Warnings

●   Use $SIG{__WARN__}.

    my $warnings = '';
    local $SIG{__WARN__} = sub { $warnings . join '', @_ };

    use Test::More tests => 2;
    is( undef,  undef,  'undef is undef' );
    is( $warnings, '',  '  no warnings' );
    

●   Use the same technique to check for expected warnings.



Dealing With Death

●   Use eval BLOCK.

    local $@;
    eval {
        croak "Wibble";
    };
    like( $@, qr/^Wibble/ );
    

●   Use the same technique to check that things didn't die.
◆   Useful for past bugs where certain inputs would cause a fatal error.



Acceptance, Regression, Unit, Functional...

●   Same thing, just a matter of timing.

●   Unit:  Detailed tests of individual parts
◆   Unit tests are easy(er)
◆   So we think of the rest in terms of unit tests

●   Functional:  Tests of your API
◆   Blackbox unit tests

●   Integration:  Testing that the pieces work together
◆   Just unit testing bigger units

●   Acceptance:  Tests defining your requirements
◆   Customer driven unit tests

●   Regression:  Tests for backwards compatibility
◆   Old tests never die, they just become regression tests

●   All can be done with the same techniques



Blackbox vs Glassbox

●   No, they're not window managers.

●   Blackbox tests use only the public, documented API.
◆   No cheating
◆   You have to forget how the code is implemented
◆   More closely approximates real world usage
◆   Immune from internal changes
◆   Often forces you to make the public API more flexible

●   Glassbox tests can use whatever you want.
◆   Cheat, steal, lie, violate encapsulation
◆   Often necessary to test certain 'untestable' parts
◆   May be broken by internal changes, undermines the test suite.

●   Blackbox is preferred where possible, glassbox is sometimes 
necessary.
◆   Sometimes you can just peek inside the box.



Test::More toys

●   Test::More has 13 ways to say ok.
◆   It also has a wonderful man page.

●   Here's some of the most common.



like()

●   Next to is() and ok(), you'll be using like() the most.

    like( $this, qr/that/ );
    

●   This is the same as:

    ok( $this =~ /that/ );
    

●   It has nicer diagnostics:

    not ok 1
    #     Failed test (contrived.t at line 2)
    #                   'wibble'
    #     doesn't match '(?-xism:woof)'
    

●   Because qr// was added in 5.005, it understands a string that 
looks like a regex for older perls.

    like( $this, '/that/' );
    

●   There is an unlike() which is the !~ version.



isa_ok()

●   We've been doing this a lot.

    ok( defined $ical,            "new(ical => '$ical_str')" );
    ok( $ical->isa('Date::ICal'), "  and it's the right class" );
    

●   You do this so much in OO code, there's a special function.

    isa_ok( $ical, 'Date::ICal' );

●   It works on references, too.

    isa_ok( $foo, 'ARRAY' );  # is $foo an array ref?

●   It also has nice diagnostics.

    not ok 1 - The object isa Date::ICal
    #     Failed test (- at line 2)
    #     The object isn't a 'Date::ICal' it's a 'ARRAY'



can_ok()

●   A test for $obj->can($some_method)

    ok( $obj->can('foo'), 'foo() method inherited' );
    

●   Simple but useful test can be like:

    # Does the Foo class have these methods?
    can_ok( 'Foo', qw(this that whatever wibble) );
    
◆   Might seem silly, but can catch stupid mistakes like forgetting a "=cut"

●   Takes an object or a class.

●   Also useful for checking your functions are exported

    use Text::Soundex;
    can_ok(__PACKAGE__, 'soundex');
    



use_ok()

●   The real first thing you test is if the module loaded.

    use Test::More tests => 1;
    BEGIN { use_ok( 'Date::ICal' ); }
    

●   Has to be inside a BEGIN block to act like a real 'use'.

●   Remember the black magic?  That's what it was doing.



is_deeply()

●   For comparing complex data structures
◆   Hashes, lists, hash of lists of hashes of lists of scalar references...

    my %expect = ( this => 42, that => [qw(1 2 3)] );
    my %got = some_function();
    is_deeply( \%got, \%expect );
    

●   Will show you where the two structures start to diverge

    not ok 1
    #     Failed test (- at line 2)
    #     Structures begin differing at:
    #          $got->{that}[2] = '3'
    #     $expected->{that}[2] = Does not exist
    

●   In CS this is really a "shallow comparison" and is() is "deep".
◆   So the name is wrong because Schwern failed CS.

●   A stopgap measure
◆   Currently doesn't handle circular structures (patches welcome)

●   Waiting for someone to step up to the plate and write Test::Set



diag()

●   Test::More's functions are pretty good about providing 
diagnostics.

●   Sometimes you need more...

●   diag() lets you display whatever diagnostic information you 
want.
◆   Guaranteed not to interfere with Test::Harness
◆   Not a test function
◆   Will not display inside a TODO block

●   Useful for giving suggestions about tricky failures



Odd User Reactions

●   Sometimes users react rather oddly to tests.
◆   won't report failures
◆   will react to failures as if the test caused the bug!
◆   will report "the tests failed" and leave off all the diagnostics
◆   won't run the tests at all



Getting People to RUN Your Tests

●   Once you've gotten people writing tests...

●   ...your next problem is getting them to RUN them



Make It Simple

●   Preferably ONE command.
◆   no user interaction (or smart defaults)
◆   'make test'
◆   'quicktest' CVS integration.



Test On Commit

●   Make running the tests part of your commit policy
◆   Automate with CVS commit actions (CVSROOT/modules)
◆   Use a system such as Aegis



Daily Smoke Test

●   Run the whole battery of tests against the latest code every 
day, automatically
◆   CPAN::Smoke is one example



Test Before Release

●   Automatically run tests as part of your release process.
◆   'make disttest'
◆   your release process is automated, right?



Testing Is Eating Your Own Dog Food

●   It forces you to use your own API.

●   Code that's hard to test may be hard to use.

●   This often makes your API more flexible.
◆   Tends to get rid of constants and assumptions



'make test'

    schwern@blackrider:~/src/devel/File-chdir$ make test
    PERL_DL_NONLAZY=1 /usr/local/bin/perl5.6.1 -Iblib/arch
    -Iblib/lib -I/usr/local/perl5.6.1/lib/5.6.1/ppc-linux-64int
    -I/usr/local/perl5.6.1/lib/5.6.1 -e
    'use Test::Harness qw(&runtests $verbose); $verbose=0;
    runtests @ARGV;' t/*.t

    t/array.............ok
    t/chdir.............ok
    t/var...............ok
    All tests successful.
    Files=3, Tests=48, 2 wallclock secs
    ( 1.71 cusr +  0.38 csys =  2.09 CPU)
    

●   When you run 'make test' on a CPAN module, you're using:

    ExtUtils::MakeMaker
    Test::Harness
    your test
    



What in the hell is all that mess?

    PERL_DL_NONLAZY=1
    

●   magic to force XS code to strictly check shared libraries

    -Iblib/lib -Iblib/lib
    

●   Changes @INC to use the module you're about to install

    -I/usr/local/perl5.6.1/lib/5.6.1/ppc-linux-64int ...
    

●   Mistake.  Code specific for testing Perl itself that leaked out.

●   Causes problems with core modules on CPAN.

●   Fixed in latest versions of MakeMaker.



The mess continued...

    -e 'use Test::Harness qw(&runtests $verbose);
    

●   import runtests and $verbose

    $verbose=0
    

●   This is really $verbose=$(TEST_VERBOSE)

    runtests @ARGV;' t/*.t
    

●   Pass in all your tests to Test::Harness::runtests()



Still more mess...

    t/array.............ok
    t/chdir.............ok
    t/var...............ok
    

●   Your tests are all ok

    All tests successful. 
    

●   It's Miller Time.

    Files=3, Tests=48,  2 wallclock secs
    ( 1.71 cusr +  0.38 csys =  2.09 CPU)
    

●   Benchmark of how long your tests took to run.  May go away.



New MakeMaker Is A Little Different

    $ make test
    PERL_DL_NONLAZY=1 /usr/local/bin/perl
    "-MExtUtils::Command::MM" "-e" 
    "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t
    t/array....ok
    t/chdir....ok
    t/var......ok
    All tests successful.
    Files=3, Tests=48,  3 wallclock secs
    ( 2.27 cusr +  0.48 csys =  2.75 CPU)
    

●   The -I$(PERL_LIB) -I$(PERL_ARCH) mistake is gone

●   The hanging Test::Harness wires have been put away

●   Mostly done for non-Unix platforms.



test.pl caveat

●   Some modules put tests in test.pl.

●   Do not do that.

●   'make test' does not parse the output which means...
◆   'make test' won't exit with non-zero on failure.
◆   Things like the CPAN shell won't know there was a failure.
◆   Historical accident, MakeMaker predates Test::Harness.



Testing and Perl versions

●   Test::Simple/More will be in 5.8.0.

●   Test.pm was put in 5.4.5.

●   Test::Harness has been around so long nobody remembers 
who wrote it.
◆   pre-5.6.1 will not support TODO tests or no_plan.

●   They're all available from CPAN.

●   They all work back to 5.4.0.

●   They all work on every platform.



Testing, CPAN Modules, PREREQ_PM

●   Some people worry about having too many prereqs on their 
CPAN modules
◆   Don't want to add prereqs on testing modules

●   A prereq of Test::More in turn prereqs & upgrades 
Test::Harness.

●   Even though Test::More isn't yet in core, it's already widely 
installed.

    Acme::ComeFrom, Acme::Magpie, Acme::Time::Asparagus,
    Acme::USIG, Acme::Your, Alzabo, Apache::ConfigParser,
    Apache::DefaultCharset, Apache::GuessCharset, Apache::RSS,
    Apache::Session::CacheAny,
    Apache::Session::Generate::ModUniqueId,
    Apache::Session::Generate::ModUsertrack,
    Apache::Session::PHP, Apache::Session::SQLite,
    Apache::Singleton, Apache::StickyQuery, App::Info,
    Archive::Any, Astro::Funtools::Parse, Attribute::Profiles,
    Attribute::Protected, Attribute::Unimplemented, CPAN,
    Business::Tax::Vat, Cache::Mmap, Carp::Assert, CDDB::File,
    CGI::Application, CGI::FormMagick, CGI::Untaint,
    CGI::Untaint::creditcard, CGI::Untaint::email,
    CGI::Untaint::uk_postcode, Class::DBI,



More modules with Test::Simple/Test::More 
prerequisites

    Class::DBI::FromCGI, Class::DBI::Join, Class::DBI::mysql,
    Class::DBI::SQLite, Class::Factory, Class::Observable,
    Class::PseudoHash, Class::Trigger, CompBio, File::Random,
    Crypt::CAST5_PP, Crypt::OOEnigma, Data::BFDump,
    Data::BT:PhoneBill, Date::Chinese, Date::DayOfWeek,
    Date::Discordian, Date::Easter, Date::Passover, Date::ICal,
    Date::ISO, Date::Japanese, Date::Leapyear, Date::Range,
    Date::Range::Birth, Date::Roman, Date::Set,
    Date::SundayLetter, Devel::Caller, Devel::LexAlias,
    Devel::Profiler, Devel::Tinderbox::Reporter, DNS::Singleton,
    Email::Find, Email::Valid::Loose, Encode::Punycode,
    Getopt::ArgvFile, GraphViz::Data::Structure, Hash::Merge,
    HTML::Calendar::Simple, HTML::DWT, HTML::ERuby,
    HTML::FromANSI, HTML::LBI, HTML::Lint, HTML::TableParser,
    HTML::Template::JIT, HTML::TextToHTML, I18N::Charset,
    IDNA::Punycode, Ima::DBI, Image::DS9, Inline::TT,
    IO::File::Log, Lingua::Pangram, Lingua::SoundChange, 
    Lingua::Zompist::Barakhinei, Lingua::Zompist::Cadhinor,
    Lingua::Zompist::Kebreni, Lingua::Zombist::Verdurian,
    Locale::Maketext::Lexicon, Log::Dispatch::Config,
    Log::Dispatch::DBI, Mail::Address::MobileJp,



Everybody's Depending on Us!

    Mail::Address::Tagged, Mail::ListDetector,
    Mail::ListDetector::Detector::Fml, MARC::Record,
    Math::Currency, Module::CoreList, Module::InstalledVersion,
    SPOPS, Net::DNS, Net::DNS::Zonefile, Net::ICal,
    Net::IDN::Nameprep, Net::IP::Match, Net::Services,
    Net::Starnet::DataAccounting, Net::Telnet::Cisco,
    OutNet::BBS, PerlPoint::Package, PHP::Session,
    Pod::Coverage, Test::Inline,
    POE::Component::IKC::ReallySimple, POE::Component::RSS,
    POE::Component::SubWrapper, POE::Session::Cascading,
    Proc::InvokeEditor, Regexp::English, Regexp::Network,
    Spreadsheet::ParseExcel::Simple, Storable, Sub::Context,
    Sub::Parameters, Term::Cap, Term::TtyRec, Test::Class,
    Test::Exception, Test::Mail, CGI::Application, Text::Quote,
    Text::WikiFormat, Tie::Array::Iterable, Tie::Hash::Approx,
    uny2k, WWW::Automate, WWW::Baseball::NPB, WWW::Page::Author,
    WWW::Page::Host, WWW::Page::Modified, WWW::Search,
    XML::Filter::BufferText, XML::SAX::Writer, XML::XPath::Simple,
    XML::XSLT, XTM, XTM::slides
    

●   So the prerequisite will likely already be resolved.

●   Brought to you by Schwern Of Borg.



t/lib trick

●   If you still don't want to have prerequisites on testing modules
◆   Copy Test/Builder.pm & Test/More.pm into t/lib/
◆   Slap a "use lib 't/lib'" on your tests
◆   distribute the whole thing

●   Who does this?
◆   CGI, CPANPLUS, MakeMaker, parrot, Test::Harness

●   Caveats
◆   You'll be adding to Test::More's takeover of search.cpan.org
◆   Adds 18K to your tarball.
◆   Can't use TODO or no_plan.



Make the GUI layer thin

●   GUIs, CGI programs, etc... are hard to test.

●   Make the problem as small as possible.
◆   Separate the form from the functionality.
◆   Put as much code into format agnostic libraries as possible
◆   Large, stand-alone programs (especially CGIs) ring alarm bells.

●   You might wind up with a small amount that still needs to be 
tested by hand.
◆   At least you don't have to test the whole thing by hand.



Testing Web Stuff

●   WWW::Automate is your friend.
◆   LWP with lots of help.
◆   Easily deals with forms
◆   "Click" on buttons
◆   Follow links
◆   Has a "back" button

●   Makes simulating a real web site user easier.



Domain Specific Test Libraries

●   WWW::Automate
◆   Technically not a test library, but sooooo useful

●   Test::Exception

●   Test::Differences
◆   Testing large blocks of text and complicated structures

●   Test::Unit
◆   Straight XUnit port to Perl
◆   Great for those used to JUnit & PyUnit 

●   Test::Class
◆   XUnit, but adapted to Perl
◆   Inherited tests

●   Test::MockObject

●   Test::Inline
◆   Embed tests in your documentation

●   Test::Mail

●   ...and many more



Test::Builder

●   Usually you want Test::More's general functions + domain 
specific ones.
◆   Unfortunately, sometimes test libraries don't play well together
◆   Who owns the test counter?
◆   Who prints the plan?

●   Test::Builder is a single backend to solve that problem.
◆   Singleton object to handle the plan and the counter
◆   Test::More-like methods you can write wrappers around

●   Test libraries built on Test::Builder will work together.

    Test::Exception, Test::Class, Test::MockObject,
    Test::Inline, Test::Mail, Test::More, Test::Simple
    

●   Attend "Writing A Test Library" for more information



Passing Tests Should PASS

●   One must trust their test suite, else it will be ignored.

●   When it fails, it should indicate a real problem.

●   "Expected failures" sap that trust.
◆   "Oh, don't worry, that test always fails on Redhat 6.2"
◆   If a failure sometimes isn't really a failure, when do you know a real 

failure?

●   "Expected failures" make test automation impossible.
◆   Programs don't know "well, the test failed but it really passed"
◆   Joe CPAN module installer also doesn't know that.

●   Get your test suite at 100% and keep it there.
◆   That's worth saying again.

●   STAY AT 100% PASSING!



Failure Is An Option

●   There are three varieties of test failure, and several solutions.
◆   A failure indicating a mistake/bad assumption in the test suite.

❐   You fix it.
◆   A real failure indicating a bug or missing feature.

❐   You fix it, or...
❐   You put off fixing it and...
❐   comment out the test (blech) or...
❐   declare it "TODO"

◆   A failure due to an assumption about the environment.
❐   You can't fix it, so you "skip" it.



It'll Never Work

●   Sometimes, a test just doesn't make sense in certain 
environments.

●   Some examples...
◆   Features which require a certain version of perl
◆   Features which require perl configured a certain way (ex.  threads)
◆   Features which are platform specific
◆   Features which require optional modules



Skipping Tests

●   Let's assume we have a test for an HTML generator.

●   Let's also assume that if we have HTML::Lint, we want to lint 
the generated code.

    require HTML::Lint;

    my $lint = HTML::Lint->new;
    isa_ok( $lint, 'HTML::Lint' );

    $lint->parse( $some_html );
    is( $lint->errors, 0, 'No errors found in HTML' );
    

●   Since HTML::Lint is optional, this test will fail if you don't have 
it.
◆   But it's not a real failure, else HTML::Lint isn't really optional.
◆   So the user shouldn't hear about it.



# SKIP

●   You can explicitly skip a set of tests rather than run them.

    1..2
    ok 1
    ok 2 # SKIP no beer
    
◆   Test #1 passed.
◆   Test #2 was skipped because there is no beer.

●   A skipped test means the test was never run.



SKIP: block

●   Test::More can cause an entire block of code not to run at all.

    SKIP: {
        eval { require HTML::Lint };

        skip "HTML::Lint not installed", 2 if $@;

        my $lint = new HTML::Lint;
        isa_ok( $lint, "HTML::Lint" );

        $lint->parse( $html );
        is( $lint->errors, 0, "No errors found in HTML" );
    }
    
◆   if we don't have HTML::Lint, the skip() function is run.
◆   skip() prevents anything further in the SKIP block to be run.
◆   the number indicates how many tests you would have run.

●   The appropriate number of 'ok's will be output.

    ok 23 # SKIP HTML::Lint not installed
    ok 24 # SKIP HTML::Lint not installed
    



skipall

●   In some cases you want to skip a whole test file.

    use Test::More;
    if( $^O eq 'MSWin32' ) {
        plan tests => 42;
    }
    else {
        plan skip_all => 'Win32 specific test';
    }
    

●   Test::More will exit at the skip_all.

●   On non-Win32, the output will be:

    1..0 # skip Win32 specific test
    

●   Test::Harness will interpret this as a skipped test.



Procrastination Codified

●   It's good to write the test before you add a new feature.

●   It's good to write a test as soon as you receive a bug report.

●   It's bad to release code with failing tests.

●   This would seem to be a contradiction.
◆   Either you fix all your bugs and add all your features immediately
◆   Or you comment out your failing tests.

●   Option #3, for the professionally lazy:
◆   Declare your failing tests to be "todo"

●   This allows one to build a test suite without having to fix all the 
bugs you find right away.



TODO Test

  TODO: {
      local $TODO = 'URI::Geller not quite working';

      my $card = 'Eight of clubs';
      is( URI::Geller->your_card, $card, 'Is this your card?' );

      my $spoon;
      URI::Geller->bend($spoon);
      is( $spoon, 'bent', 'Spoon bending' );
  }
    

●   Output will be something like:

  not ok 23 - Is this your card
            # TODO URI::Geller not quite working
  not ok 24 - Spoon bending
            # TODO URI::Geller not quite working
    



Automated TODO List

●   TODO reverses the sense of the test
◆   'not ok' will be treated as a quiet success
◆   'ok' Test::Harness will warn you of an "unexpected success"

●   It's a TODO list
◆   Write your tests before your feature/bug fix
◆   Each 'unexpected success' is an item off your todo list
◆   Remove the TODO wrapper

●   You can release at any point and not have to cull your test 
suite

●   Keeps users from seeing "expected failures" 

●   Each open bug can have a test.
◆   Sometimes bugs get accidentally fixed



Keep Test Scripts Small

●   Many testing questions start with
◆   "I've got this test script with 1400 tests..."

●   Big tests are
◆   Hard to maintain
◆   Hard to decouple
◆   Hard to read
◆   Take a long time to run
◆   Have all the same problems as big subroutines

●   Keep them small & focused.
◆   One function or set of functions per script
◆   One aspect per script
◆   Put complicated tests in their own script
◆   Put slow tests in their own script

●   Test::Simple/More's tests are a good example



Big FTP/XML program example

●   Common testing problem.  You have a big program which...
◆   Downloads an XML file via FTP
◆   Parses the XML
◆   Generates HTML

●   How do you test that?



Programs Are Hard, Libraries Are Easy

●   The smaller the piece, the better.

●   The more flexible the piece, the better.

●   The more hooks into the guts, the better.
◆   Libraries of functions can have small, flexible pieces.
◆   Programs are, by definition, monolithic.

●   Extract pieces out of your program and put it into a library
◆   Then test the library
◆   Side-benefit, you'll have improved your code

●   Take the FTP, XML parsing and HTML generation code out of 
the program.



Separate Form And Functionality

●   HTML is hard to test
◆   It changes a lot
◆   It's hard to parse

●   Instead of going from XML straight to HTML

●   ...go from XML -> agnostic format -> HTML
◆   Test the XML -> agnostic part
◆   Test the agnostic -> HTML part

●   Much easier to test when only one of the input/output pair is 
formatted.

●   ...and you'll have improved the flexibility of your code.



Mock Code

●   Sometimes you just can't run a piece of code in a test
◆   Maybe there's no network connection
◆   Maybe the test is destructive (system("/sbin/shutdown now"))

●   Going to the extreme edge of glassbox testing, replacing code 
for testing



System call / Power manager example

●   Say you have to test a power management daemon

●   One of the things it does is puts the computer to sleep

●   How do you test that?

  sub should_i_sleep {
      my($power_remaining) = @_;

      system("/sbin/snooze") if $power_remaining < $Min_Power;
      return 1;
  }



First, Isolate The Untestable Part

    sub should_i_sleep {
        my($power_remaining) = @_;

        snooze if $power_remaining < $Min_Power;
        return 1;
    }

    sub snooze {
        system("/sbin/snooze");
    }
    

●   Test snooze() by hand once.
◆   It's small, so you can get away with it



Then, Replace The Untestable Part

    {
        my @snooze_args = ();
        my $snooze_called = 0;
        local *Power::Manager::snooze = sub {
            $snooze_called++;
            @snooze_args = @_;  # trap the arguments
            return 0;   # simulate successful system call
        };

        should_i_sleep($Min_Power - 1);
        is( $snooze_called, 1,  'snooze called once' );
        is( @snooze_args,   0,  '  called properly'  );
    }
    

●   Check that it was called.

●   Check that it got the right arguments

●   By changing the return value to non-zero we can simulate a 
failure.

●   Very, very powerful technique.



Forcing Failure

●   How will your program react if, say, the database connection 
fails?

    use DBI;
    {
        local *DBI::connect = sub {
            return 0;
        };

        ...test for graceful failure here...
    }

    ...test for graceful recovery here...
    



He's Your Dog, Charlie Brown

●   Don't leave testing for the QA guys
◆   too much delay
◆   too much animosity

●   You know your code, you can test it
◆   and you can fix it
◆   and you wrote it, so it's your bug :P



Further Reading

●   perl-qa@perl.org

●   http://archive.develooper.com/perl-qa@perl.org/

●   "Perl Debugged"

●   "Writing Solid Code"
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